Tiempo

Tiempo White Paper #2:

Introduction to SystemVerilog
Asynchronous Modeling

Version 2.0 — March 16, 2011

Copyright 2011 TIEMPO SAS
All rights reserved

Copyright 2011 TIEMPO SAS - All rights reserved
. . This document cannot be copied or transmitted without prior written authorization
www.tiempo-ic.com by TIEMPO SAS.




Introduction to SystemVerilog Asynchronous Modeling

Overview

This document is a first introduction on Tiempo SystemVerilog coding style that is
used to write high-level synthesizable models of circuits designed in Tiempo unique
asynchronous and delay-insensitive technology. Targeted audience includes chip
designers and managers who are familiar with hardware description languages.
Section 2 lists the key concepts in SystemVerilog that are important for the modeling
and the verification of asynchronous systems and section 3 introduces their practical
use in a simple design example.

Outline
1 INrOAUCHION ... 3
2 SystemVerilog modeling principles for asynchronous design ............ccceevvvvvvnnnnn.. 4
2.1 Modeling for SYNthESIS........ooeeiiiiii e 4
2.1.1  Channel definitioNS ...........ooiiiiiiiiiiiiiiiiiie e aneenaeees 4
2.1.2  Channel OperationS.........oouuuuiiii i a e 4
2.1.3  ASYNCNIONOUS PrOCESSES ...uuiiiiiiiieieiiieeeeeeiteeeeeetaeeeeeasaeeeeasnaeeeeannaaaees 5
2.1.4  Interfacing with the synchronous world ...................eeeviiiiiiiiiiiiiiiiiiiiiiinnens 5
2.2 Modeling for verification..............oouuiiiii i 6
3 SystemVerilog asynchronous modeling: an example..........cccccvieieiiieeieeeiiiiinnn. 7
3.1 The structure of the design and its testbench..................... 7
3.2 The control part: a finite state machine......................... 8
3.3 The operative part: an arithmetic and logic unit............ccccccoooiiiiiiiiin. 11
3.4 The top module and the testbench ... 14
4 CONCIUSION ... 16

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

1 Introduction

Tiempo offers an innovative asynchronous and delay-insensitive design technology,
with a portfolio of powerful asynchronous IP cores and a fully automated synthesis
tool supporting these cores and their design technology.

Chips designed in this technology and/or integrating these asynchronous cores show
outstanding physical properties such as ultra-low power, ultra-low noise, ability to
work at ultra-low and variable voltage levels, reactivity (sleep mode by default,
immediate wake-up), robustness against process-voltage-temperature (PVT)
variations and resistance to hardware attacks (e.g., power analysis, fault injections).

The ground reason for such capabilities is that Tiempo asynchronous circuits are fully
clock-less and self-controlled, their behavior being governed by signal transitions
rendezvous and signal levels memorization. These principles, implemented with
specific signal encoding and glitch-free logic, ensure functional correctness
regardless of any actual delay through gates and wires. For more information on the
fundamental design techniques used in Tiempo asynchronous circuits, the reader will
refer to Tiempo White Paper #1 “Tiempo Technology Introduction”.

Tiempo synthesis tool — ACC (Asynchronous Circuit Compiler) — takes as input
descriptions written in the standard IEEE 1800 SystemVerilog language at
transaction-level modeling (TLM), and generates as output standard Verilog gate-
level netlists. The input models are written using a specific coding style as well as
predefined SystemVerilog packages provided by Tiempo.

This document introduces Tiempo SystemVerilog asynchronous coding style through
a simple design example including a typical finite state machine and a simple
operative part.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

2 SystemVerilog modeling principles for asynchronous design

2.1 Modeling for synthesis

Tiempo SystemVerilog coding style to model asynchronous designs uses
SystemVerilog Transaction-Level Modeling (TLM). TLM is the most suitable
abstraction level to model asynchronous designs, which mainly consist of concurrent
processes (modeled as SystemVerilog always blocks) communicating through
channels (modeled as SystemVerilog interfaces).

2.1.1 Channel definitions

Channels represent the basic medium for communication between asynchronous
design entities and processes. A channel allows point to point communication
between two processes, each communication through a channel involving a token
exchange between the two processes. The process initiating the communication is
the active process, the other being the passive process.

This point to point communication uses a handshake protocol that can be of two
kinds: push or pull. In the push protocol, the active process writes a token to the
channel and the passive process reads a token from the channel; in the pull protocol,
the active process reads the token from the channel and the passive process writes
the token to the channel.

Channels are modeled as SystemVerilog interfaces. Channel ports are represented
by SystemVerilog interface modport port declarations. Channels are defined as push
or pull channels and with a specific data type.

Tiempo provides the designer with SystemVerilog definition files that predefine an
interface (i.e., channel type) for each of the predefined SystemVerilog data types (bit,
byte, logic, reg, int, shortint, longint, integer), as well as macros that enable the
definition of channels carrying data of any user-defined type (enum or array types for
example). Finally, a predefined type (event_type) is available to model channels
exchanging tokens that do not carry any data value and are used for synchronization
purpose.

2.1.2 Channel operations

Channel communications are modeled as read and write operations using methods
automatically predefined with each channel type (SystemVerilog interface). Channel
operations include:

¢ Read channel operation: this operation enables a process to read a data from
a channel; it suspends the reading process until the handshake protocol is
completed; after the read operation, the data obtained may be used in the
process without blocking the channel writer (this generally incurs a
memorization of the read value);

e BeginRead and EndRead channel operations: these dual operations also
enable a process to read a data from a channel, but unlike the single Read
operation, they block the channel writer until the read value is processed, thus

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

allowing the designer to control the availability of the channel and possibly
avoiding the memorization of the read value; indeed, the BeginRead
operation acquires the data without releasing (acknowledging) the channel,
the latter being released only by the EndRead operation;

o Write channel operation: this operation allows a process to write a data on a
channel following a handshake protocol; the writing process is suspended until
the handshake protocol completes;

o Ready channel status: this property is defined as a bit signal that is constantly
updated so as to reflect the status of a channel; it is available on the passive
port of a channel to sense if communication has been initiated over the
channel by the corresponding active port: it returns bit value 1 if the active
component has initiated communication over the channel, and bit value 0
otherwise; it is typically used in the expression of a SystemVerilog wait
statement to suspend the enclosing process until one of the corresponding
channels becomes ready.

Note that the implementation details of Tiempo asynchronous handshake protocols
are completely hidden to the designer who can therefore focus on the high-level
modeling of the design (see examples of section 3).

2.1.3 Asynchronous processes

An asynchronous process specifies a dataflow network relating a set of channels
read by the process to another set of channels written by the process. The
synchronization is exclusively done through channel handshake operations. Signal
event statements (e.g., posedge, negedge) are not used. An asynchronous process
is implemented by a SystemVerilog always process statement containing neither
event control nor event expression. As they imply event control statements, the
always_ff, always_latch and always_comb processes cannot be used to model
asynchronous processes.

Because of the used point to point handshake communication protocols,
asynchronous processes suspend while executing channel read-write operations.
Indeed, a read operation on a channel can complete only if a corresponding write
operation is executed on the same channel. Similarly, a write operation can complete
only if a corresponding read operation is done on the same channel.

Any typical SystemVerilog control flow structure can be used (iflelse, for, case,
unique if, unique case) among the sequential statements of the asynchronous
process (always block). In addition, fork/join constructs are used to express the
parallelism of multiple channel communications (see examples of section 3).

2.1.4 Interfacing with the synchronous world

Tiempo provides a set of predefined modules that implement various asynchronous-
to-synchronous and synchronous-to-asynchronous interface communications,
allowing the designer to model mixed asynchronous-synchronous designs that can
be simulated with any standard HDL simulator supporting mixed Verilog, VHDL and
SystemVerilog descriptions.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

2.2 Modeling for verification

Any type of SystemVerilog testbenches can be used to verify asynchronous designs
or mixed synchronous-asynchronous designs. The abstraction level of SystemVerilog
testbenches is perfectly suited to verify asynchronous designs modeled in Tiempo
SystemVerilog asynchronous coding style.

Tiempo recommends standard SystemVerilog-based verification methodologies such
as VMM (Verification Methodology Manual) or OVM (Open Verification Methodology).

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

3 SystemVerilog asynchronous modeling: an example

3.1 The structure of the design and its testbench

This section is an illustration of the usage of SystemVerilog to model asynchronous
designs using the concepts introduced in section 2. For that purpose, a very simple
design, along with its testbench, is described in this section.

This design is mainly composed of two simple asynchronous modules:

e The first module is the control unit and is based on a finite state machine
(FSM). It performs a sequence of operations to control the other part of the
design, also referred to as the operative unit.

e The second module is the operative unit and models a very basic arithmetic
and logic unit (ALU). It can perform two types of calculation, either adding or
subtracting its operands.

A third module, named Top, instantiates both FSM and ALU modules and propagates
through channels the data between the FSM, the ALU and the outside environment.
Finally, a test module, named Testbench, instantiates Top, stimulates its inputs with
random data, collects and checks its outputs.

Figure 1 describes the architecture of this design. It shows the two asynchronous
modules, the FSM and the ALU, and how they are connected within the testbench.
Connections are highlighted with the red double arrows and are modeled with
Tiempo channels introduced in section 2.1. These channels are used to implement
the asynchronous communication protocols between processes/modules.

Test Bench OP channel for asynchronous
coemmunication

n asynchronous medule

compenent for verification

Test Bench purposes

Figure 1: Architecture of the design and its testbench

The channels used to communicate with the FSM are named GO, AB, ST and OP.
GO and AB are the channels used to control the FSM and are described further in
the next section. ST is used to confirm that the whole FSM sequence is completed,
and OP carries the type of operation to be performed (either add or subtract).

The channels used to communicate with the ALU are A, B, respectively its two
operands, Z, which carries the result of the ALU operation, and finally OP, described
previously.

Copyright 2011 TIEMPO SAS - All rights reserved 7
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

3.2 The control part: a finite state machine

The state machine diagram is shown in Figure 2. It has four distinct states, SO through
S3, and can trigger the ALU with the desired operation.

= Action A1: writes ADD to OP,
only if AB = 0.

» Action A2: writes SUB to OP,
only if AB = 0.

= Action A3: writes an event on ST.

Figure 2: Channels and state diagram of the Finite State Machine

In its initial state SO, the FSM wakes up reading the GO channel. The latter can
deliver two values, respectively SEQ1 and SEQ2, according to the specific sequence
of actions to execute.

In the case of SEQ1, the FSM moves to state S1 and triggers the ALU to perform a
signed addition (action A1). In the case of SEQ2, the FSM moves to state S2 and
triggers the ALU to subtract the operands (action A2).

In both states S1 and S2, the FSM can be stopped in its sequence and forced to
return to its initial state SO. This is controlled by the AB channel which aborts the
FSM sequence if it carries a value equal to ‘1’ or let it execute normally if it carries a
value equal to ‘0’.

When not aborted (i.e., AB =0), the FSM sends the expected operation to the ALU
through the OP channel and moves to the final state S3.

In state S3, the FSM generates an event on ST channel (action A3) and goes back to
the initial state S0, waiting for a new start.

User-defined data types and channels

The SystemVerilog description of such an asynchronous block will typically start with
several definitions of user-defined types of data and channels. These definitions are
given in Code Sample 1.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.




Introduction to SystemVerilog Asynchronous Modeling

‘ifndef _ MYDEFINES
‘define _ MYDEFINES

"include "std async_defs.sv"

typedef enum {sSO, S1, S2, S3} state t;
typedef enum {SEQl, SEQ2} go_t;
typedef enum {ADD, SUB} opcode t;

: DEF CHANNEL (go_t)
"DEF CHANNEL (opcode_t)

“endif

Code Sample 1: System Verilog source code of user-defined type and channel definitions

This file, named “defines.sv”, is included in each SystemVerilog file where there is a
reference to any channel or data using these user-defined types.

In this design, three types of enumerated data are defined with the typedef keyword:
o state t, which defines the four FSM states,
¢ go_t, which defines the two possible sequences of actions,
e opcode_t, which defines the two types of ALU operations.

While state t is used only for the definition of the internal state variable in the FSM
source code, go_t and opcode_t are the types of the data handled by the GO and OP
channels. Therefore, the designer has to use Tiempo predefined 'DEF_CHANNEL
macro to define the corresponding channel types (used to declare channels that
transfer data of these user-defined types). The channel types generated by this
macro are used in the module channel port definitions of the FSM (see Code Sample
2 below).

Note the inclusion of the “std_async _defs.sv” file which includes Tiempo predefined
asynchronous types and interfaces, enabling for example the definition of user-
defined channels with the "DEF_CHANNEL macro or the instantiation of predefined
asynchronous-to/from-synchronous interfaces.

The SystemVerilog source code of the FSM is given below in Code Sample 2.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

“include "defines.sv"
module FSM (

push channel opcode t.out OP,
push channel event type.out ST,
push channel go t.in GO,

push channel bit.in AB

)7

always begin : fsm process
go_t go;
bit ab;

opcode_t op;
static state t state = S0;

unique case (state)

S0: begin
GO.Read (go) ;
unique case (go)
SEQl: state = S1;
SEQ2: state S2;
endcase
end

S1, S2: begin
AB.Read (ab) ;
unique if (ab == 1'bl) state
else begin
unique if (state == S1) op = ADD;
else op = SUB;
OP.Write (op);
state = S3;
end
end

S0;

S3: begin
ST.Write (SREVENT) ;
state = S0;
end
endcase

end

endmodule

Code Sample 2: SystemVerilog source code of the FSM

Input and output channel ports of the asynchronous module

The FSM module first declares a list of channel input and output ports used to
communicate with other units. Each one of these channel port definitions specifies

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

the channel kind (“push” or “pull”), the data type it carries (user-defined,
SystemVerilog integer data type or predefined Tiempo type) and finally the channel

port mode (“in” or “out”) to enable the module to perform either a Read or a Write
operation on these channel ports.

OP and GO channels carry data of user-defined types as defined in the “define.sv”
file. The AB channel carries SystemVerilog bit data. Finally, the ST channel is
defined with Tiempo predefined type event_type that is used to model single event
channels that are channels propagating events but not carrying any data.

All the channels are of kind “push” which means that the initiator of the
communication is the process that performs a Write operation (kind “pull” means that
the initiator of the communication is the process that performs a Read operation).

The mode of the GO and AB channel ports is “in“ as these channels are accessed by
the FSM module for Read operations, while the mode of the OP and ST channel
ports is “out” so that the module can perform Write operations on them.

The FSM process

The FSM process is modeled with an always block just as in any synchronous
models, except that there is no clock and no sensitivity list. It instead infinitely loops
with a unique case statement, using the FSM state and waiting for the completion of
the read and write operations on its channel ports.

These read and write operations on channel ports are respectively modeled with the
Read and Write operations defined with each channel type. These operations
include the full handshake protocol of asynchronous communications, meaning that
the process is suspended until the corresponding operation is initiated, and the
channel on which such operation is performed is released as soon as the operation is
completed. For the read operation, this generally results in the local memorization of
the value that has been read.

For example, in state SO, the FSM process executes the GO.Read(go) operation
which triggers a read access on the GO channel and stores the read value in the
local variable named go. The process will wait for the completion of this reading
before executing the statements which follow this operation.

In states S1 and S2, once the AB channel is read, standard equality operators (==
and standard controlling statements (if/else) are used to either abort the sequence
and go back to state SO, or to continue the sequence and trigger the ALU by writing
the OP channel.

3.3 The operative part: an arithmetic and logic unit

The ALU diagram in Figure 3 is shown below and introduces the port modes of its
communication channels.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

i

Figure 3: ALU diagram

The ALU module accesses with read operations the channel ports A, B and OP of
mode “in”, where A and B respectively carry the operand values and OP carries the
type of the operation to be performed, and it uses the channel port Z of mode “out” to
write the result of the computation.

The Code Sample 3 below shows the SystemVerilog source code of the ALU.

“include "defines.sv"

module ALU (
push channel byte.out Z,
push channel byte.in A,
push channel byte.in B,
push channel opcode t.in OP

) ;

always begin : compute
opcode_t op;
byte a, b, z;

fork
OP.BeginRead (op) ;
A.BeginRead (a) ;
B.BeginRead (b) ;
join

unique case
ADD: z =
SUB: z

endcase

Z.Write(z);

[e]
I + 'O
o o

~.

QoL o~

fork
OP.EndRead () ;
A.EndRead () ;
B.EndRead () ;
join

end

endmodule

Code Sample 3: SystemVerilog source code of the ALU

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

Here the standard SystemVerilog byte data type has been used to model the data
carried by the operands and the result of the ALU, and the corresponding channel
types, which are predefined in Tiempo SystemVerilog definition files, are used to
define the corresponding channel ports (Tiempo provides SystemVerilog files
including all channel type definitions for all SystemVerilog integer data types).

Modeling with fork and join statements

The designer uses in this description fork and join statements to model the fact that
a set of channel communications is expected without any specific order. Otherwise,
the sequential order of these events would have to be guaranteed at the cost of
additional hardware resources (i.e., asynchronous sequencers).

The ALU example illustrates this parallelization with read operations on OP, A and B
channels. This is possible only because there is no dependency between the
processing of the related data: a, b and op local variables are all independent. On the
contrary, z can only be computed when all previous variables are set: it is thus
impossible to add the Z.Write(z) operation into the fork/join list of threads.

Avoiding useless memorization

Unlike in the FSM example where channel read operations are performed with a
single Read operation, channel read operations in the ALU example are modeled
using dual BeginRead and EndRead operations (also defined for each channel

type).

These dual operations are used to avoid the memorization of the value that has been
read. In this case, the channel on which the BeginRead has been executed is not
released, therefore holding the value, until a corresponding EndRead is executed. As

a consequence, the process which wrote the value being hold is also suspended until
the corresponding EndRead operation is executed.

In this example, the OP, A and B channels carry values that are held during all other
operations executed by the ALU. These channels are released only after the result
has been computed and successfully written to the Z channel.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

3.4 The top module and the testbench

Code Sample 4 below shows the SystemVerilog description of the Top module which
instantiates the FSM and the ALU modules.

“include "defines.sv"
module Top (

push channel event type.out ST,
push channel go t.in GO,
push channel bit.in AB,
push channel byte.out 7,
push channel byte.in A,
push channel byte.in B

)
push channel opcode t OP ();
FSM UO (OP, ST, GO, AB);

ALU Ul (Z, A, B, 0OP);
endmodule

Code Sample 4: SystemVerilog source code of the Top module

There is quite no difference in the way an asynchronous module is instantiated within
another module compared to synchronous designs. The only difference is the usage
of channel ports and internal channels instead of modules ports and internal signals.
In this example, an internal channel, named OP, is instantiated to connect the output
channel port OP of the FSM module to the input channel port OP of the ALU module.
The remaining channel ports (all the others ports except OP) are connected through
the hierarchy of the Top module.

Code Sample 5 below describes the Testbench module. For the sake of simplicity,
only the relevant parts of the testbench source code are described here.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

“include "defines.sv"
module Testbench;

push channel go t GO ();
push channel bit AB ();
push channel event type ST ();
push channel byte A ();
push channel byte B ();
push channel byte Z ();

go_t go;
bit ab;
byte a, b, z;

Top UO (ST, GO, AB, Z, A, B);

always begin : p bench
for (integer i=0; i<LOOP NB; i=i+1) begin
// Code for generation of random stimuli on a,b, ab and go
//
fork
GO.Write (go) ;
AB.Write (ab) ;
join

if (ab == 1'b0) begin
fork
A.Write(a);
B.Write(b) ;
Z.Read(z) ;
begin
wait (ST.Ready) ;
ST.EndRead;
end
join
end
// Code for data checking
//
end
end
endmodule

Code Sample 5: SystemVerilog source code of the Testbench module

The testbench is a verification module and has no input or output channel ports.

First, internal channels are instantiated to allow communication with the Top module,
then the Top module is instantiated followed by a unique always block with a for
loop to generate random stimuli, apply these stimuli to the Top module input channel
ports, retrieve its results and verify them against a reference.

Code Sample 5 above mainly describes how the stimuli are applied and results
retrieved. One can notice that the same simple Read and Write operations are used
to apply those stimuli and retrieve the results to/from the Top channel ports. It is also
interesting to note that, whenever possible, these operations can be parallelized as
well within fork and join statements.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



Introduction to SystemVerilog Asynchronous Modeling

4 Conclusion

Tiempo SystemVerilog asynchronous coding style offers to the designer a very
simple and efficient way to write high-level models of asynchronous designs that are
automatically synthesized with ACC, Tiempo Asynchronous Circuit Compiler, into a
Verilog gate-level netlist.

SystemVerilog asynchronous models can be written by designers who are not expert
in asynchronous design, most of the implementations details of Tiempo unique
asynchronous design technology being hidden to the designer: acknowledge signals
requested by the handshake communication protocols, specific signal encoding
(dual-rail, multi-rail) and glitch-free logic that are mandatory to ensure the delay
insensitivity of the generated designs. The designer can therefore focus on a high-
level modeling style that, independently from the fact that it generates asynchronous
designs, is very efficient to explore and design different architectures of complex
System-On-Chips.

Copyright 2011 TIEMPO SAS - All rights reserved
This document cannot be copied or transmitted without prior written authorization by TIEMPO SAS.



For further information

Tiempo

110 rue Blaise Pascal

Batiment Viseo — Inovallée
38330 Montbonnot Saint Martin
FRANCE

T:+3347661 1000
F:+3347644 1969

Copyright 2011 TIEMPO SAS - All rights reserved

This document cannot be copied or transmitted without prior written authorization
by TIEMPO SAS.

www.tiempo-ic.com




	1 Introduction
	2 SystemVerilog modeling principles for asynchronous design
	2.1 Modeling for synthesis
	2.1.1 Channel definitions
	2.1.2 Channel operations
	2.1.3 Asynchronous processes
	2.1.4 Interfacing with the synchronous world

	2.2 Modeling for verification

	3 SystemVerilog asynchronous modeling: an example
	3.1 The structure of the design and its testbench
	3.2 The control part: a finite state machine
	3.3 The operative part: an arithmetic and logic unit
	3.4 The top module and the testbench

	4  Conclusion
	Tiempo 110 rue Blaise Pascal Bâtiment Viseo – Inovallée 38330 Montbonnot Saint Martin FRANCE T : +33 4 76 61 10 00 F : +33 4 76 44 19 69
	//


